소아청소년과김준범 교수 사진

김준범

진료과 : 소아청소년과 홈페이지

전문진료분야 : 저신장, 성조숙증, 비만, 당뇨, 갑상선질환, 기타 내분비질환, 이온채널병, 유전학클리닉

전화 : 02-2639-5200

홈페이지 : http://www.ncbi.nlm.nih.gov/gtr/labs/320444/


(주간) 진료시간표 (2019-07-15 ~ 2019-07-20)

* 전화예약 : 1644-5775

전화 전화예약 ( 1644-5775)
의료진 진료시간표
진료시간
오전      외래진료 외래진료  
오후외래진료 외래진료        

학력 및 경력

내용 숨기기
가톨릭대학교 의과대학 졸업
미국 University of Pittsburgh 의학유전학과 석사
가톨릭대학교 대학원 의학과 박사

한림대학교 한강성심병원 소아청소년과 임상과장
미국 Massachusetts General Hospital 신경유전학연구소 연수
미국 Pittsburgh Human Gene Therapy Center 연구원
가톨릭대학교 서울성모병원 소아청소년과 임상강사
가톨릭대학교 서울성모병원 인턴, 소아청소년과 전공의

가입학회 및 활동

내용 숨기기
대한소아과학회
대한소아내분비학회 (소아내분비학 세부전문의)
미국 내분비학회 (The Endocrine Society)
European Neurological Society
American Society of Human Genetics
BMJ, FEBS Letters, JNNP, PNAS 논문심사위원

수상경력

내용 숨기기
대한소아과학회 보원학술논문상 (2016)
대한소아과학회 석천학술상 연구상 (2012)
대한소아과학회 춘계학술대회 학술상 (2011)
아시아소아과학연구학회 우수연구상 (2010)
아시아소아과학연구학회 Travel Award (2010)
대한소아과학회 춘계학술대회 학술상 (2007)

대표 논문 및 저서

내용 숨기기
1. The large conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis.
2. Channelopathies.
3. Cell cycle arrest in Batten disease lymphoblast cells.
4. Myxobacterial metabolites enhance cell proliferation and reduce intracellular stress in cells from a Parkinson's disease mouse model.
5. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.
6. Normokalemic periodic paralysis is not a distinct disease.
7. Possible therapeutic effects of myxobacterial metabolites on type I Gaucher disease.
8. Novel de novo nonsense mutation of FBN1 gene in a patient with Marfan syndrome.
9. Hematologic profiles and eosinophilia in very low birth weight infants.
10. Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A.
11. Altered expression of potassium channel genes in familial hypokalemic periodic paralysis.
12. Possible therapeutic effect of growth hormone in Gaucher disease cells.
13. Expression patterns of two potassium channel genes in skeletal muscle cells of patients with familial hypokalemic periodic paralysis.
14. Transient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation.
15. Hyperkalemic periodic paralysis and paramyotonia congenita caused by a de novo mutation in the SCN4A gene.
16. A study on the measurement of the nucleated red blood cell (nRBC) count based on birth weight and its correlation with perinatal prognosis in infants with very low birth weights.
17. Reduced expression and abnormal localization of the KATP channel subunit SUR2A in patients with familial hypokalemic periodic paralysis.
18. Expression pattern of Kir6.2 in skeletal muscle cells of patients with familial hypokalemic periodic paralysis.
19. An atypical phenotype of familial hypokalemic periodic paralysis caused by a mutation in the sodium channel gene SCN4A.
20. Resveratrol upregulates p21, a cell cycle regulator, in Gaucher disease cells.
21. Identification of a novel de novo mutation in the SCN4A gene in a patient with paramyotonia congenita.
22. Severe respiratory phenotype caused by a de novo Arg528Gly mutation in the CACNA1S gene in a patient with hypokalemic periodic paralysis.
23. Effect of extracellular potassium on delayed rectifier potassium channel proteins of KCNQ3 and KCNQ5 in familial hypokalemic periodic paralysis.
24. The etiology of precocious puberty.
25. Novel de novo mutation in the KCNJ2 gene in a patient with Andersen-Tawil syndrome.
26. The genotype and clinical phenotype of Korean patients with familial hypokalemic periodic paralysis.
27. The effect of gonadotropin releasing hormone agonist with or without growth hormone treatment on predicted adult height in girls with early puberty.
28. The efficacy of speech and language therapy for children with speech and language delays according to the etiologies.
29. A Korean Family of Hypokalemic Periodic Paralysis with Mutation in a Voltage-gated Calcium Channel (R1239G).
30. Establishment of mouse embryonic stem (ES) cell lines which express a human mutant (N370S) glucocerebrosidase (GC) gene to rescue the lethal phenotype of mice homozygous for the disrupted murine GC gene.